
2. (a) If $y=(a x+b)^{m}$ find $D^{n}(a x+b)^{m}$.
(b) Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}}(\cos m x)^{\frac{n}{x^{2}}}$.
(c) Find the length of a quadrant of the circle $r=2 a \sin \theta$.
(d) Evaluate $\int_{0}^{\pi / 2} \sin ^{8} x \cos ^{6} x d x$.
(e) The circle $x^{2}+y^{2}=a^{2}$ revolves about the x-axis. Show that the surface area and the volume of the sphere thus generated are respectively $4 \pi a^{2}$ and $\frac{4}{3} \pi a^{3}$.
3. (a) Evaluate $\int_{0}^{\pi / 4} \tan ^{5} x d x$.
(b) Find the volume of the solid generated by revolving the part of parabola $x^{2}=4 a y, a>0$ between the ordinates $y=0$ and $y=a$ about its axis.
(c) Find the area of the smaller portion enclosed by the curves $x^{2}+y^{2}=9$ and $y^{2}=8 x$.
(d) Trace out the curve cycloid

$$
x=a(\theta-\sin \theta), y=a(1-\cos \theta)
$$

4. (a) Through what angle must be the axis be turned to remove $x y$ term from $7 x^{2}+4 x y+3 y^{2}=0$.
(b) If pair of lines $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ be such that each pair bisects the angles between the other pair, prove that $p q+1=0$.
(c) Find the equaiton of the cylinder whose generators are parallel to the straight line $\frac{x}{-1}=\frac{y}{2}=\frac{z}{3}$ and whose guiding curve is $x^{2}+y^{2}=9, z=1$.
(d) The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the co-ordinate axes A, B, C. Fine the equation of the cone generated by the straight lines drawn from 0 to meet the circle $A B C$.
5. (a) Show that the semi-latus rectum of a conic is the harmonic mean between the segments of a focal chord.
(b) Find the equation of the circle on the sphere $x^{2}+y^{2}+z^{2}=49$ whose centre is at the point $(2,-1,3)$.
(c) Show that the straight line $r \cos (\theta-\alpha)=p$ touches the conic $\frac{l}{r}=1+e \cos \theta$ if $(l \cos \alpha-e p)^{2}+l^{2} \sin ^{2} \alpha=p^{2}$.
(d) Find the equation of the plane which passes through the point $(2,1,-1)$ and is orthogonal to each of the planes $x-y+z=1$ and $3 x+4 y-2 z=0$.
6. (a) Find t he differential equation of all circles passing through the origin having centres on the x-axis.
(b) Find an integrating factor of the differential equation
$\left(3 x^{2} y^{4}+2 x y\right) d x+\left(2 x^{3} y^{3}-x^{2}\right) d y=0$
(c) Find the general and the singular solutions of $y=p x+\sqrt{a^{2} p^{2}+b^{2}}$.
(d) Reduce the differential equation $\left(p x^{2}+y^{2}\right)(p x+y)=(p+1)^{2}$ to clairaut's form by the substitution $u=x y, v=x+y$ and then find the general solution. Where $p=\frac{d y}{d x}$. 6
